2012 nobel prize predictions

September 10, 2012 at 1:35 pm | | nobel, science community

It’s time again for my annual blog post Nobel Prize predictions. This year I’m limiting to the chemistry prizes. Of course there are many more individuals and discoveries that should be listed below and even more who deserve a Nobel Prize!

 

Single-Molecule Spectroscopy

Moerner, Orrit

Single-molecule imaging has matured to an important technique in biophysics. Just go to a Biophysical Society meeting and see all the talks and posters with “single molecule” in the title! Single-molecule techniques have begun to answer biological questions that would be obscured in traditional imaging. Moreover, super-resolution techniques such as PALM and STORM rely directly on detecting single molecules and the spectroscopic techniques developed in the late 80s and 90s. W.E. Moerner won the 2008 Wolf Prize in Chemistry.

 

Electrochemistry/Bioinorganic Electron Transfer

Bard, Gray

Al Bard won the 2008 Wolf Prize in Chemistry; Harry Gray won it in 2004.

 

Polymer Synthesis

Matyjaszewski, Frechet

Jean Frechet invented chemically-amplified photoresists and developed dendrimer synthesis. Kris Matyjaszewski won the 2011 Wolf Prize in Chemistry for ATRP polymerization. Of course, others were involved in both discoveries.

 

GPCR Structure

Kobilka, Stevens, and Palczewski

Biomolecule structures have won chemistry Nobels in the past, so I’m including G-protein coupled receptors here. A lot of buzz in the last couple years about GPCRs and Nobel. Good article here.

Update 10/10/12: Kobilka wins.

 

Chaperonins

Horwich, Hartl

Although these are biological molecules, they are still molecules. And many Chemistry Nobels have gone to bio-related discoveries in the last couple decades. Both won the Lasker Award in 2011.

 

Biomolecular Motors

Vale, Spudich, Sheetz

Another bio subject, but you really never know with the Chemistry prize. All three just won the Lasker Award this year.

 

(BTW, check out other predictions at ChemBark and The Curious Wavefunction and Thompson. And my prior predictions.)

(P.S. W.E. Moerner was my PhD advisor. Also, I worked in a collaboration with Kris Matyjaszewski when I was an undergrad.)

Update 9/11/12: I added chaperonins and biomolecular motors because I figure this year’s Chemistry Nobel might be more biological.

Update 10/3/12: Paul and I were interviewed for a Slate.com piece on Nobel Prize predictions. I like Paul’s section, especially about Djerassi. Anyway, here is what I said:

The line between chemistry and other fields (especially biology) is often blurred, and that’s a wonderful thing; but this fact sometimes results in a chemistry Nobel Prize being awarded for a decidedly biological discovery (like the 2009 prize for the structure of the ribosome). This may be exacerbated by the fact that the physiology or medicine prize tends to go to things directly related to health, and the chemistry prize often is used to cover the more basic biological science feats. Personally, I think it is a testament to the central position the field of chemistry holds in the Venn diagram of science.

My top prediction is for single-molecule spectroscopy. In 1989, W.E. Moerner at IBM (now at Stanford) was the first to use light (lasers) to perform measurements on single molecules. Before this, millions or trillions of molecules or more were measured together to detect an average signal. His amazingly difficult feat required ultrasensitive detection techniques, perfect samples, and temperatures just above absolute zero! A year later, Michel Orrit in France observed the fluorescent photons from a single molecule. With those early experiments, Moerner and others laid the experimental groundwork for imaging single molecules.

Single-molecule spectroscopy and imaging has become a subfield unto itself. I performed my Ph.D. research in the Moerner lab, and I know firsthand that the technique reveals events that would otherwise be hidden in averages of “bulk” measurements. Biophysics, the field of understanding how cells and biomolecules operate on a physical level, is particularly aided because rare events can have major effects in biology. (Think of a single cell mutating and then dividing into a tumor.) For example, Sunney Xie at the Pacific Northwest National Laboratory (now at Harvard) performed the early work on how individual enzymes experience multiple states, which otherwise would be averaged away in a bulk experiment. More recently, imaging single molecules has been instrumental in novel “super-resolution” techniques that reveal structures in cells at tenfold higher resolution than ever available before. Several companies (Pacific Biosciences, Helicos, Illumina, Life Technologies) have either released or are developing products that use single-molecule imaging to sequence individual strands of DNA. My prediction is bolstered by others along the same vein. In 2008, Moerner won the Wolf Prize in Chemistry, which is often considered a harbinger for the Nobel. More importantly, The Simpsons were betting on Moerner in 2010. Of course, that was Milhouse’s prediction, and maybe it’s more reasonable to go with Lisa.

My other prediction is for biomolecular motors (aka molecular motors). These are proteins in cells that move important cargo around, and on a more practical level, make muscles contract. Ron Vale (now at University of California, San Francisco) and Michael Sheetz (now at Columbia) discovered kinesin, a protein that walks along tiny tubes and pulls cargo to different parts of the cell. This is supremely important because it would take far too long (months in some cases) for diffusion alone to bring nutrients and signaling molecules to all parts of the cell. (Interestingly, kinesin was discovered from the neurons of squids because they are extraordinarily long cells!) Jim Spudich (at Stanford), Sheetz, Vale, and others have developed many important techniques for studying the actions of these tiny machines. Spudich shared this year’s Lasker Award, which many see portending a Nobel, with Vale and Sheetz.

It’s hard not to allow hope to creep into almost anything we humans do, and I have clearly failed to prevent my own desires from influencing my predictions: I would be thrilled to see either of the above discoveries—or any that I list on my blog—win a prize. But there are many, many deserving scientists who have discovered amazing things and helped millions of people. Unfortunately, only a handful of these amazing individuals will be awarded the ultimate recognition in science. So it goes.

4 Comments »

RSS feed for comments on this post. TrackBack URI

  1. [...] 2012 predictions: Curious Wavefunction, Derek Lowe, Musings on Music and Life, Everyday Scientist. [...]

    Pingback by Predictions for the 2012 Nobel Prize in Chemistry | ChemBark — September 11, 2012 #

  2. [...] I were interviewed for a Slate.com article about Nobel Prize predictions. More details back at my original post on the 2012 Prize. | No Comments [...]

    Pingback by Everyday Scientist — October 3, 2012 #

  3. [...] I predicted G-protein coupled receptors (GPCRs) and Brian Kobilka, but not Robert Lefkowitz. Congrats to [...]

    Pingback by Everyday Scientist » 2012 nobel in chemistry: Kobilka and Lefkowitz — October 10, 2012 #

  4. […] Kobilka for GPCRs. In 2010, I got Heck and Suzuki. (You can find my previous predictions here: 2012, 2011, 2010, all Nobel posts.) Here’s this year’s stab at […]

    Pingback by Everyday Scientist » 2013 Nobel predictions — September 26, 2013 #

Leave a comment

thanks for the comment


four × 9 =

Powered by WordPress, Theme Based on "Pool" by Borja Fernandez
Entries and comments feeds. Valid XHTML and CSS.
^Top^