2017 nobel prize predictions

September 20, 2017 at 10:14 am | | nobel

It’s approaching Nobel season again, and here are my predictions:

Chemistry: CRISPR (Doudna, Charpentier, Zhang)

Medicine: Unfolded protein response (Walter, Mori)

Physics: Gravitational waves (Kip Thorne, Rainer Weiss, Ronald Drever, or maybe Barry Barish and the entire LIGO collaboration)

Last year, I think the detection gravitational waves happened a little too late to actually be selected for 2016. But now it’s a year later! Unfortunately, Ronald Drever passed away in the meantime.

In years past, I think CRISPR’s potential had not been actualized enough to win, but by this time it’s obvious that the technology works and is already impacting science. Lithium batteries have changed the world, and John Goodenough deserves the prize. But he recently announced a new battery technology that some scientists are skeptical will work. Maybe that’s too much controversy for the Nobel committee?

I considered optogenetics (Deisseroth, Zemelman, Miesenböck, Isacoff), but I didn’t want to predict both that and CRISPR in one year. Since Peter Walter and Kazutoshi Mori won a Lasker prize a few years ago now, I think it’s their time.


My past predictions

Clarivate (formerly Thompson) Citation Laureates

C&E News webinar

Photometrics Prime95B demo number 2

September 13, 2017 at 2:49 pm | | hardware, review

Technical Instruments loaned me a Photometrics Prime95B back-thinned CMOS camera. I had demoed this camera before, but I was able to put it on our scope this time. Our spinning disk confocal has two camera ports, so I installed a tube lens that made the effective pixel size on the Prime95B approximately the same as our 512×512 Andor iXon EMCCD. The Prime95B looked beautiful for a moderately bright sample:

(Note that I cropped the Prime95B images by approximately 60% both laterally and axially, because the illumination area on the microscope was restricted to the center of the field of view. Uncropped, the Prime95B field of view would be over twice as big in each dimension!)

At very low light imaging, I had to set the EMCCD gain very high to get an image with good signal-to-noise. The Prime95B had slightly lower sensitivity in this imaging regime, but honestly, I was surprised that its images looked that good:

The only problems I ran into had to do with the PVCAM driver for the camera having some issues in Micro-Manager (mainly with having trouble shuttering the lasers correctly), but I was able to find moderately acceptable workarounds.

If I were buying a camera for spinning disk, TIRF, epifluorescence, etc. (really, anything except single-fluorophore microscopy), I would probably get a Prime95B. I hope other sensor manufacturers and scientific camera companies follow suit and release more excellent back-thinned CMOS cameras.

Powered by WordPress, Theme Based on "Pool" by Borja Fernandez
Entries and comments feeds. Valid XHTML and CSS.